Perspective on theories of non-Fickian transport in heterogeneous media

نویسندگان

  • Shlomo P. Neuman
  • Daniel M. Tartakovsky
چکیده

Subsurface fluid flow and solute transport take place in a multiscale heterogeneous environment. Neither these phenomena nor their host environment can be observed or described with certainty at all scales and locations of relevance. The resulting ambiguity has led to alternative conceptualizations of flow and transport and multiple ways of addressing their scale and space–time dependencies. We focus our attention on four approaches that give rise to nonlocal representations of advective and dispersive transport of nonreactive tracers in randomly heterogeneous porous or fractured continua. We compare these approaches theoretically on the basis of their underlying premises and the mathematical forms of the corresponding nonlocal advective–dispersive terms. One of the four approaches describes transport at some reference support scale by a classical (Fickian) advection–dispersion equation (ADE) in which velocity is a spatially (and possibly temporally) correlated random field. The randomness of the velocity, which is given by Darcy’s law, stems from random fluctuations in hydraulic conductivity (and advective porosity though this is often disregarded). Averaging the stochastic ADE over an ensemble of velocity fields results in a space–time-nonlocal representation of mean advective–dispersive flux, an approach we designate as stnADE. A closely related space–time-nonlocal representation of ensemble mean transport is obtained upon averaging the motion of solute particles through a random velocity field within a Lagrangian framework, an approach we designate stnL. The concept of continuous time random walk (CTRW) yields a representation of advective–dispersive flux that is nonlocal in time but local in space. Closely related to the latter are forms of ADE entailing fractional derivatives (fADE) which leads to representations of advective–dispersive flux that are nonlocal in space but local in time; nonlocality in time arises in the context of multirate mass transfer models, which we exclude from consideration in this paper. We describe briefly each of these four nonlocal approaches and offer a perspective on their differences, commonalities, and relative merits as analytical and predictive tools. ! 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay mechanisms of non-Fickian transport in heterogeneous media

[1] Fickian models of diffusion often fail to describe transport phenomena in heterogeneous environments due to their inability to capture the sub-scale fluctuations. We present an effective description of non-Fickian behavior that reflects the dichotomy between the continuum nature of Fick’s law and the finite (effective) observation scale associated with experimental studies of transport phen...

متن کامل

Upscaling and reversibility of Taylor dispersion in heterogeneous porous media.

Tracer flow in stratified porous media is dominated by the interaction between convective transport and transverse diffusive mixing. By averaging the tracer concentration in the transverse direction, a one-dimensional non-Fickian dispersion model is derived. The model accounts for the relaxation process that reduces the convective transport to dispersive mixing. This process is (short-) time co...

متن کامل

Non-Fickian mixing: temporal evolution of the scalar dissipation rate in porous media

We investigate the temporal scaling properties of mixing in heterogeneous permeability fields with variances ranging from very small (σ lnK = 0.01) to very large (σ lnK = 9). We quantify mixing by the scalar dissipation rate, which we estimate over a large range of temporal scales. For an initial pulse line injection, we find that moderate and strong heterogeneity induce Preprint submitted to E...

متن کامل

Signature of non-Fickian solute transport in complex heterogeneous porous media.

We simulate transport of a solute through three-dimensional images of different rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a function of distance) measured on similar cores in nuclear magnetic resonance experiments and the...

متن کامل

Using groundwater age distributions to estimate the effective parameters of Fickian and non-Fickian models of solute transport.

Groundwater age distributions are used to estimate the parameters of Fickian, and non-Fickian, effective models of solute transport. Based on the similarities between the transport and age equations, we develop a deconvolution based approach that describes transport between two monitoring wells. We show that the proposed method gives exact estimates of the travel time distribution between two w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009